: Multiple Interfaces
\because UIMG $^{\circledR}$ Technology
!. Snappy On-Screen Barcode Capture
※. Outstanding Power Efficiency
\because Compact \& Lightweight Design

LV2097

OEM Scan Engine

Features

UIMG ${ }^{\circledR}$ Technology

Armed with Six-generation of UIMG ${ }^{\circledR}$ Technology, the Scan Engine Can Swiftly And Effortlessly Decode Even Poor Quality Barcodes(e.g., Low Contrast, Laminated, Damaged,
Torn,warped or Wrinkled).

Snappy On-Screen Barcode Capture

The LV2097 Excels at Reading On-screen Barcodeseven
When the Screen is Covered with Protectivefilm or Set to Its Lowest Brightness Level.

Compact \& Lightweight Design

Seamless Integration of Imager and Decoder Boardmakes the Scan Engine Extremely Smallest And Lightweight and Easy to Fit into Miniature Equipment.

Outstanding Power Efficiency
The Advanced NLDC Technology Incorporated in Thescan Engine Helps Reduce Its Power Consumption Andprolong Its Service Life.

Multiple Interfaces

The LV2097 Supports USB and TTL-232 Interfacesto Meet Diverse Customer Needs.

Application Scenarios

LV2097

OEM Scan Engine

Performance	Image Sensor		640*480 CMOS
	Illumination		White LED
	Aiming		Red LED (625 nm)
	Symbologies	2D	PDF417, QR Code, Micro QR, Data Matrix.
		1D	Code 128, EAN-13, EAN-8, Code 39, UPC-A, UPC-E, Codabar, Interleaved 2 of 5, ITF-6, ITF-14, ISBN, ISSN, Code 93, UCC/EAN-128, GS1 Databar, Matrix 2 of 5, Code 11, Industrial 2 of 5, Standard 2 of 5, AIM128, Plessey, MSI-Plessey
	Resolution*		$\geq 3 \mathrm{mil}$
	Typical Depth of Field*		EAN-13 (13mil): $60 \mathrm{~mm}-350 \mathrm{~mm}$
			Code 39 (5 mil): $40 \mathrm{~mm}-150 \mathrm{~mm}$
			PDF417 (6.7 mil): $50 \mathrm{~mm}-125 \mathrm{~mm}$
			Data Matrix (10 mil): $45 \mathrm{~mm}-120 \mathrm{~mm}$
			QR Code (15 mil): $30 \mathrm{~mm}-170 \mathrm{~mm}$
	Min. Symbol Contrast*		25\%
	Scan Angle**		Roll: 360°, Pitch: $\pm 60^{\circ}$, Skew: $\pm 60^{\circ}$
	Field of View		Horizontal 42°, Vertical 31.5°
Mechanical/ Electrical	Interface		TTL-232, USB
	Operating Voltage		$3.3 \mathrm{VDC} \pm 5 \%$
	Current@3.3VDC	Operating	138mA (typical)
		Idle	11.8 mA
	Dimensions		$21.5(\mathrm{~W}) \times 9.0(\mathrm{D}) \times 7.0(\mathrm{H}) \mathrm{mm}$ (max)
	Weight		1.2 g
Environmental	Operating Temperature		$-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
	Storage Temperature		$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
	Humidity		5\% to 95\% (non-condensing)
	Ambient Light		0~100,000lux (natural light)
Certifications			FCC Part15 Class B, CE EMC Class B, RoHS2.0, IEC62471
Accessories	EVK-N1	Software beeper and	velopment board for the NLS-N1, equipped with a trigger button, RS-232 \& USB Type-C interfaces.
	Cable	$\begin{array}{ll} \hline \text { USB } & \text { US } \\ \text { RS-232 } & \text { U } \\ \hline \end{array}$	d to connect the EVK-N1 to a host device. d to connect the EVK-N1 to a host device.

*Test conditions: $\mathrm{T}=23^{\prime} \mathrm{C}$; llumination= 300lux using incandescent lamp; sample barcodes made by Rakinda.
*Test conditions: Scan Distance=(min. DOF + max. DOF)/2; $\mathrm{T}=23^{\circ} \mathrm{C}$; llumination=300lux using incandescent lamp; 2D: QR Code; 10 Bytes; Resolution=30mil; $\mathrm{PCS}=0.8$. Specifications are subject to change without notice.

